Crystal Data: Monoclinic. Point Group: m or $2 / m$. As spherical aggregates $(<100 \mathrm{~mm})$ of tabular crystals ($<10 \mathrm{~mm}$).

Physical Properties: Cleavage: Distinct. Fracture: n.d. Tenacity: Brittle.
Hardness $=$ n.d. $\quad D($ meas. $)=$ n.d. $\quad D($ calc. $)=6.011$
Optical Properties: Translucent. Color: Lemon-yellow. Streak: White. Luster: Vitreous. Optical Class: n.d.

Cell Data: Space Group: $C c$ or $C 2 / c . \quad a=24.917(3) \quad b=5.506(1) \quad c=14.242(2)$
$\beta=101.77(1)^{\circ} \quad Z=4$

X-ray Powder Pattern: Baccu Locci mine, near Villaputzu, Sardinia, Italy. 3.034 (100), 3.685 (60), 2.728 (38), 2.043 (28), 3.314 (20), 2.079 (18), 2.106 (15)

Chemistry:		(1)	(2)
	PbO	61.26	63.80
	SO_{2}	0.14	
	CdO	1.44	
	CuO	4.29	4.55
	SeO_{2}	24.84	25.37
	Cl	8.41	8.11
	$-\mathrm{O}=\mathrm{Cl}_{2}$	1.90	1.83
	Total	98.48	100.00

(1) Baccu Locci mine, near Villaputzu, Sardinia, Italy; average of 7 electron microprobe analyses, corresponding to $\left(\mathrm{Pb}_{4.83} \mathrm{Cd}_{0.20}\right)_{\Sigma=5.03} \mathrm{Cu}_{0.95}\left(\mathrm{Se}_{3.94} \mathrm{~S}_{0.04}\right)_{\Sigma=3.98} \mathrm{O}_{11.83} \mathrm{Cl}_{4.17}$. (2) $\mathrm{Pb}_{5} \mathrm{CuCl}_{4}\left(\mathrm{SeO}_{3}\right)_{4}$.

Occurrence: A secondary mineral in a hydrothermal lead arsenic mineral deposit.
Association: Orlandiite, chalcomenite, anglesite.
Distribution: From the Baccu Locci mine, near Villaputzu, Sardinia, Italy.
Name: For Sarrabus, the region in Sardinia, from which the first specimens were obtained.
Type Material: Department of Structural Chemistry and Inorganic Stereochemistry, University of Milan, Italy (2010-02).

References: (1) Gemmi, M., I. Campostrini, F. Demartin, T. Gorelik, and C.M. Gramaccioli (2012) Structure of the new mineral sarrabusite, $\mathrm{Pb}_{5} \mathrm{CuCl}_{4}\left(\mathrm{SeO}_{3}\right)_{4}$, solved by manual electron-diffraction tomography. Acta Cryst., B68, 15-23. (2) (2012) Amer. Mineral., 97, 1265 (abs. ref. 1).

