Otwayite \(\text{Ni}_2(\text{CO}_3)(\text{OH})_2\cdot\text{H}_2\text{O} \)

\(^{\text{(c)2001-2005 Mineral Data Publishing, version 1}}\)

Crystal Data: Orthorhombic (?). **Point Group:** n.d. Fiber bundles, to several hundred \(\mu \text{m} \), in divergent interlocking sprays perpendicular to veinlet walls; as spherules, claylike coatings.

Physical Properties: Hardness = n.d. \(\text{VHN} = 130–360 \) (5 g load). \(\text{D(meas.)} = 3.41 \)

\(\text{D(calc.)} = 3.346 \)

Optical Properties: Opaque to translucent. **Color:** Bright green; pale green in transmitted light. **Luster:** Silky to waxy. **Optical Class:** Biaxial. **Pleochroism:** Weak; deepest color \(\perp \) fiber axis. **Orientation:** Parallel extinction, length-fast. \(\alpha = 1.65 \quad \beta = \text{n.d.} \quad \gamma = 1.72 \quad 2\text{V(meas.)} = \text{n.d.} \)

Cell Data: **Space Group:** n.d. \(a = 10.18 \quad b = 27.4 \quad c = 3.22 \quad Z = 8 \)

X-ray Powder Pattern: Otway deposit, Western Australia. 6.84 (10), 5.67 (8), 2.737 (6), 3.022 (5), 2.529 (5), 2.24 (5), 2.370 (4)

Chemistry:

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CO}_2)</td>
<td>19.57</td>
<td>19.18</td>
</tr>
<tr>
<td>(\text{NiO})</td>
<td>62.87</td>
<td>65.11</td>
</tr>
<tr>
<td>(\text{MgO})</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>(\text{H}_2\text{O})</td>
<td>16.42</td>
<td>15.71</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

(1) Otway deposit, Western Australia; by AA, colorimetry, and direct determination of C and H, recalculated to 100\% from an original total of 99.01\% after deduction of SiO\(_2\) 0.28\% as pecoraite; then corresponding to \((\text{Ni}_{1.99}\text{Mg}_{0.06})_{\Sigma=1.06}(\text{CO}_3)_{0.01}(\text{OH})_{1.92} \cdot 1.10\text{H}_2\text{O}\). (2) \(\text{Ni}_2(\text{CO}_3)(\text{OH})_2\cdot\text{H}_2\text{O} \). (3) Lord Brassey mine, Tasmania, Australia; average of 14 analyses, \((\text{CO}_3)^{2-}, (\text{SO}_4)^{2-}, (\text{OH})^{1-} \), and \(\text{H}_2\text{O} \) confirmed by IR; stated to correspond to \(\text{Ni}_2[(\text{CO}_3/0.84)(\text{SO}_4/0.16)]_{\Sigma=1.00}(\text{OH})_2 \cdot 2\text{H}_2\text{O} \).

Occurrence: In veinlets in serpentinite (Otway prospect, Western Australia; Lord Brassey mine, Tasmania, Australia).

Association: Magnesite, pecoraite, gisementite, paraotwayite, millerite, polydymite, nickelooan chrysotile, apatite (Otway deposit, Western Australia); theophrastite, hellyerite, zaratite, magnetite (Lord Brassey mine, Tasmania, Australia).

Distribution: In Australia, from the Otway nickel deposit, near Spinnaway, Nullagine district, and in the 132 North nickel mine, 4 km southwest of Widgiemooltha, Western Australia; at the Lord Brassey mine, near Heazlewood, Tasmania.

Name: To honor Charles Albert Otway (1922–), prospector of Gosnells, Western Australia, owner of the Otway prospect.

Type Material: Western Australian Museum, Perth, Australia, M.60.1991; National Museum of Natural History, Washington, D.C., USA, 142804.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Mineral Data Publishing.