Lawrencite
\((\text{Fe}^{2+}, \text{Ni})\text{Cl}_2\)

\(\copyright 2001-2005\) Mineral Data Publishing, version 1

Crystal Data: Hexagonal. \textit{Point Group:} \textit{3} \textit{2} \textit{m}. As massive efflorescences.

Optical Properties: \textit{Translucent.} \textit{Color:} Green to brown; fresh synthetic material is white. \textit{Optical Class:} Uniaxial (−); weak birefringence. \(\omega = 1.567(5)\) \(\epsilon = \text{n.d.}\)

Cell Data: \textit{Space Group:} \textit{R} \textit{3m}. \(a = 3.58\) \(c = 17.5\) \(Z = 3\)

X-ray Powder Pattern: Synthetic FeCl\(_2\). (ICDD 1-1106).
2.54 (100), 5.9 (63), 1.800 (63), 3.07 (30), 1.467 (20), 1.138 (18), 1.953 (13)

Chemistry: Analyses of H\(_2\)O extracts of iron meteorites appear to agree with FeCl\(_2\) with additional nickel; modern work does not support the species however, finding only akaganéite as the principal alteration product.

Occurrence: In iron meteorites, presumed to be a terrestrial alteration of meteoritic iron. Also as a volcanic sublimate.

Association: Iron, molysite.

Distribution: Noted in the Tazewell, Ovifak, Canyon Diablo, and other iron meteorites. At Vesuvius, Campania, Italy.

Name: Honors John Lawrence Smith (1818–1883), American chemist, mineralogist, and student of meteorites, who discovered the mineral.