Bohseite

\[\text{Ca}_4\text{Be}_4\text{Si}_4\text{O}_{24}(\text{OH})_4 \]

Crystal Data: Orthorhombic (Monoclinic optical properties).
Point Group: 2/m 2/m 2/m.
As fan-like or parallel aggregates (to 0.7 cm) of platy striated crystals to 2 mm.

Physical Properties:
- **Cleavage:** Perfect on {001}, fair on {010}.
- **Fracture:** Splintery.
- **Tenacity:** Brittle.
- **Hardness:** 5-6
- **D(meas.)** = n.d.
- **D(calc.)** = 2.719

Optical Properties:
- **Translucent.**
- **Color:** White.
- **Streak:** White.
- **Luster:** Vitreous.
- **Optical Class:** Biaxial (+).
- \(a = 1.579(2) \)
- \(\beta = 1.580(2) \)
- \(\gamma = 1.597(2) \)
- \(2V(\text{meas.}) = 24(3)^\circ \)
- \(2V(\text{calc.}) = 27^\circ \)
- **Dispersion:** Weak, \(r < v. \)
- **Orientation:** \(X^\parallel a = 16^\circ, Y^\parallel b = 16^\circ, Z^\parallel c. \)

Cell Data:
- **Space Group:** Cmcm.
- \(a = 23.204(6) \)
- \(b = 4.9442(9) \)
- \(c = 19.418(6) \)
- \(Z = 4 \)

X-ray Powder Pattern: Calculated pattern.
- \(3.334(100), 3.723(51), 3.385(44), 4.166(38), 3.027(37), 2.553(31), 2.553(31), 3.236(28) \)

Chemistry:

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>58.83</td>
<td>57.41</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>3.51</td>
<td>3.51</td>
</tr>
<tr>
<td>CaO</td>
<td>24.61</td>
<td>23.75</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.07</td>
<td>0.18</td>
</tr>
<tr>
<td>F₂</td>
<td>0.45</td>
<td>0.55</td>
</tr>
<tr>
<td>BeO</td>
<td>[9.31]</td>
<td>[9.07]</td>
</tr>
<tr>
<td>H₂O</td>
<td>[3.12]</td>
<td>[3.05]</td>
</tr>
<tr>
<td>- O = F₂</td>
<td>0.19</td>
<td>0.23</td>
</tr>
<tr>
<td>Total</td>
<td>99.71</td>
<td>97.29</td>
</tr>
</tbody>
</table>

(1) Piława Górna quarry, ~50 km southwest of Wroclaw, Poland; average of 17 electron microprobe analyses supplemented by FTIR spectroscopy, BeO and H₂O calculated so that Be = 13 – (Si+Al) and Ca+Na = Al+Be; corresponding to \((\text{Ca}_{4.02}\text{Na}_{0.02})_{2-4.04}(\text{Be}_{3.41}\text{Al}_{0.59})_{2-4.06}(\text{Si}_{8.96}\text{Al}_{0.04})_{2-4.06}\text{O}_{24.22}\) \([(\text{OH})_{3.1}]\text{F}_{0.22}\text{O}_{0.61}][\text{F}_{4.04}]. \)

(2) Piława Górna quarry, ~50 km southwest of Wroclaw, Poland; average of 10 electron microprobe analyses supplemented by FTIR spectroscopy, BeO and H₂O calculated so that Be = 13 – (Si+Al) and Ca+Na = Al+Be; corresponding to \((\text{Ca}_{3.97}\text{Na}_{0.05})_{2-4.02}(\text{Be}_{3.40}\text{Al}_{0.60})_{2-4.00}\) \((\text{Si}_{8.96}\text{Al}_{0.04})_{2-4.00}\text{O}_{24.27}[(\text{OH})_{3.1}]\text{F}_{0.27}\text{O}_{0.56}][\text{F}_{4.04}]. \)

Polymorphism & Series: Forms a series with bavenite.

Occurrence: In strongly fractionated parts of zoned anatectic (NYF-LCT) pegmatite dikes that cut amphibolite.

Association: Microcline, Cs-rich beryl, phenakite, helvite, lepidolite, bertrandite (Poland).

Distribution: From the Piława Górna quarry, eastern part of the Góry Sowie Block, NE part of the Bohemian massif, ~50 km southwest of Wroclaw, Poland and from the Ilímaussaq alkaline complex, South Greenland.

Name: Honors the Danish geologist Hennning Bohse (b. 1942) who has worked for more than 40 years on the mineralogy and geology of the Ilímaussaq alkaline complex.

Type Material: Mineralogical Museum, University of Wroclaw, Poland (MMUWr IV7678 and IV7679) and the Natural History Museum, Copenhagen, Denmark (GM 1995.32).

References: