Crystal Data: Tetragonal. *Point Group*: 4/m. Typically pseudomorphous after torbernite by stepped dehydration, as square tabular crystals, flattened on {001} and modified by {011}, in lamellar or subparallel to sheaflike aggregates, and as rosettes, to 2 cm.

Physical Properties: *Cleavage*: Perfect on {001}; indistinct on {010}. *Tenacity*: Brittle. Hardness = 2.5 D(meas.) = 3.52-3.70 D(calc.) = 3.689 Radioactive.

Optical Properties: Transparent to translucent. *Color*: Pale green to dark green. *Luster*: Vitreous, subadamantine, pearly on {001}.

Optical Class: Uniaxial (+) or uniaxial (-); anomalously biaxial in sectors. $\omega = 1.618-1.631$ $\varepsilon = 1.622-1.628$ Pleochroism: Weak; O = green, E = pale green to blue. Absorption: O > E. Dispersion: r > v, extreme.

Cell Data: *Space Group*: P4/n. a = 6.9756(5) c = 17.349(2) Z = 2

X-ray Powder Pattern: Schneeberg, Germany.

8.71 (100), 3.678 (100), 3.480 (80), 3.232 (80), 5.44 (75), 4.93 (75), 2.931 (70)

α	nistry:
(ha	mictra:
CHU	mou y.

	(1)	(2)
UO_3	59.67	61.01
P_2O_5	14.00	15.14
SiO_2	0.40	
CuO	8.50	8.48
H_2O	15.00	15.37
Total	97.57	100.00

(1) Gunnislake mine, England. (2) Cu(UO₂)₂(PO₄)₂·8H₂O.

Mineral Group: Meta-autunite group.

Occurrence: Typically a secondary mineral, a dehydration product of torbernite formed during weathering; formed directly above 75 °C.

Association: Torbernite, meta-autunite.

Distribution: Widespread; probably occurs at all localities for torbernite (q.v.). First described from Schneeberg, Saxony, Germany. Material from the Gunnislake mine, Calstock, Cornwall, England, is thought to be primary.

Name: The prefix *meta* indicates the dehydration product of *torbernite*.

References: (1) Palache, C., H. Berman, and C. Frondel (1951) Dana's system of mineralogy, (7th edition), v. II, 991-992. (2) Frondel, C. (1958) Systematic mineralogy of uranium and thorium. U.S. Geol. Sur. Bull. 1064, 208-211. (3) Ross, M., H.T. Evans, Jr., and D.E. Appleman (1964) Studies of the torbernite minerals (II): the crystal structure of meta-torbernite. Amer. Mineral., 49, 1603-1621. (4) Stergiou, A.C., P.J. Rentzeperis, and S. Sklavounos (1993) Refinement of the crystal structure of metatorbernite. Zeits. Krist., 205, 1-7. (5) Locock, A.J. and P.C. Burns (2003) Crystal structures and synthesis of the copper-dominant members of the autunite and meta-autunite groups: torbernite, zeunerite, metatorbernite and metazeunerite. Can. Mineral., 41, 489-502. (6) (2004) Amer. Mineral., 89(1), 252 (abs. ref. 5). (7) Stubbs, J.E., J.E. Post, D.C. Elbert, P.J. Heaney, and D.R. Veblen (2010) Uranyl phosphate sheet reconstruction during dehydration of metatorbernite [Cu(UO₂)₂(PO₄)₂·8H₂O]. Amer. Mineral., 95, 1132-1140.