Crystal Data: Hexagonal. *Point Group*: 3 m. As platelets, commonly curved or crenulated, to 100 μ m, that form compact clusters and whorls to 6 mm.

Physical Properties: *Cleavage*: Perfect on {0001}. *Fracture*: n.d. *Tenacity*: Flexible, inelastic. Hardness = 1.5-2 D(meas.) = 2.062(5) D(calc.) = 2.023

Optical Properties: Transparent. *Color*: Purple to deep magenta; pale pink in transmitted light. *Streak*: Pale pink to white. *Luster*: Resinous to waxy. *Optical Class*: Uniaxial (-). $\omega = 1.555$ $\varepsilon = 1.535$ *Pleochroism*: Distinct, violet to pinkish lilac.

Cell Data: Space Group: $R\bar{3}m$. a = 3.103(2) c = 24.11(2) Z = 3/8

X-ray Powder Pattern: Mount Keith nickel deposit, Western Australia. 8.0361 (100), 4.0205 (48), 2.0072 (6), 2.3488 (5), 2.6239 (3), 1.6977 (2), 1.5237 (2)

Chemistry:		(1)	(2)
	Mg	22.90	21.93
	Cr	9.56	15.64
	Fe	4.30	
	Al	0.60	
	Cl	8.71	10.66
	S	0.03	
	CO ₃	1.52	
	OH	[41.40]	40.93
	<u>H2</u> O	[10.96]	10.84
	Total	100.00	100.00

(1) Mount Keith nickel deposit, Western Australia; electron microprobe analysis supplemented by DTA, CO₃ by Leco carbon analyzer, OH and H₂O calculated, corrected to allow for H₂O+OH lost in high vacuum and under electron beam; corresponds to Mg_{6.19}(Cr³⁺_{1.21}Fe³⁺_{0.51}Al_{0.15})_{Σ =1.87}(OH)₁₆ [Cl_{1.62}(CO₃)_{0.17}(SO₄)_{0.01}]_{Σ =1.80•4H₂O. (2) Mg₆Cr₂(OH)₁₆Cl₂•4H₂O.}

Polymorphism & Series: Solid solution with stichtite. 3R polytype.

Mineral Group: Hydrotalcite supergroup, hydrotalcite group.

Occurrence: In a low-grade, disseminated nickel sulfide deposit in lizardite+brucite-altered dunite formed by hydrothermal alteration of primary magmatic chromite by Cl-rich solutions at temperatures < 320°C.

Association: Chromite, lizardite, brucite, iowaite, pentlandite, magnetite, tochilinite.

Distribution: From the Mount Keith nickel deposit, about 90 km NNE of Leinster, northeastern Goldfields district, Western Australia.

Name: Honors Australian geologist Roy Woodall (b. 1930) who was instrumental in the initiation and development of the nickel and alumina industries in Western Australia.

Type Material: South Australian Museum, Adelaide (G25116), the Western Australian Museum, Perth (WAM M1.2000), and the Museum of Victoria, Melbourne (M46222), Australia.

References: (1) Grguric, B.A., I.C. Madsen, and A. Pring (2001) Woodallite, a new chromium analogue of iowaite from the Mount Keith nickel deposit, Western Australia. Mineral. Mag., 65(3), 427-435. (2) (2002) Amer. Mineral., 87(1), 182 (abs. ref. 1). (3) Mills, S. J., A. G. Christy, J.-M. R. Ge'nin, T. Kameda, and F. Colombo (2012) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineral. Mag., 76(5), 1289-1336.