Crystal Data: Monoclinic. *Point Group*: 2/m. As isolated, stout prismatic grains, to tens of micrometers, or as radiating aggregates.

Physical Properties:Cleavage: None.Fracture: n.d.Tenacity: Brittle.Hardness = n.d.D(meas.) = n.d.D(calc.) = 4.27

Optical Properties: Transparent. *Color*: Very dark brown to black. *Streak*: Brown. *Luster*: Vitreous to adamantine.

Optical Class: Biaxial. $\alpha > 1.74$ n(calc.) = 1.82 2V(meas.) = n.d. 2V(calc.) = n.d.*Orientation*: n.d. *Pleochroism*: Strong; yellow-brown, red-brown, dark greenish brown.

Cell Data: Space Group: $P2_1/m$. a = 8.856(3) b = 5.729(2) c = 10.038(4) $\beta = 113.088(4)^{\circ}$ Z = 2

X-ray Powder Pattern: Vielle Aure village, central Pyrénées, France. [calculated pattern] 2.8890 (100), 2.6124 (54), 3.5004 (43), 2.8645 (41), 2.7023 (34), 2.7114 (31), 2.5916 (26)

Chemistry:		(1)		(1)
	SiO_2	28.81	CaO	2.57
	Al_2O_3	9.65	Ce_2O_3	16.14
	TiO ₂	0.06	La_2O_3	8.29
	Fe_2O_3	2.18	Nd_2O_3	0.84
	MnO	17.78	Sm_2O_3	0
	Mn_2O_3	1.75	F	0.57
	V_2O_3	5.30	H_2O	[1.44]
	MgO	1.22	Total	96.36
	SrO	0		

(1) Vielle Aure village, central Pyrénées, France; average of 4 electron microprobe analyses, H₂O calculated from stoichiometry; corresponding to $[Mn^{2+}_{0.62}Ca_{0.38}]_{\Sigma=1.00}$ [(Ce_{0.39}La_{0.15}Nd_{0.10}Sm_{0.02})_{$\Sigma R E E = 0.66}$ Ca_{0.21}Sr_{0.11}]_{$\Sigma = 0.98$}[V³⁺_{0.80}Al_{0.16}Mg_{0.03}Ti_{0.01}]_{$\Sigma = 1.00$}Al_{1.00}}

 $[(Ce_{0,39}La_{0,15}Nd_{0,10}Sm_{0,02})_{\Sigma REE=0.66}Ca_{0,21}Sr_{0,11}]_{\Sigma=0.98}[V - _{0.80}AI_{0,16}Mg_{0,03}I_{10,01}]_{\Sigma=1.00}AI_{1} \\ [Mn^{2+}_{0.36}V^{3+}_{0.31}Fe^{2+}_{0.23}Fe^{3+}_{0.10}]_{\Sigma=1.00}Si_{2}O_{7}SiO_{4}O(OH).$

Mineral Group: Epidote group, allanite subgroup.

Occurrence: In quartz-rhodochrosite-sulfide veins cross-cutting massive rhodochrosite ore, as well as in the ore itself, in quartz grains rimmed by chalcopyrite.

Association: Quartz, vuorelainenite, rhodochrosite, chalcopyrite, vanadian spessartine, friedelite.

Distribution: From the mine above Vielle Aure village, central Pyrénées, France.

Name: An epidote-group mineral in which Ce^{3+} is dominant in A2, Mn^{2+} in A1, V^{3+} in M1, Al in M2, and in which Mn^{2+} is the dominant charge-compensating (*i.e.* divalent) cation in M3.

Type Material: Mineral Museum, School of Mines, Paris, France, (73952).

References: (1) Cenki-Tok, B., A. Ragu, T. Armbruster, C. Chopin, and O. Medenbach (2006) New Mn- and rare-earth rich epidote-group minerals in metacherts: manganiandrosite-(Ce) and vanadoandrosite-(Ce). Eur. J. Mineral., 18, 569-582. (2) (2007) Amer. Mineral., 92, 704-705 (abs. ref. 1).