Stishovite

Crystal Data: Tetragonal. Point Group: 4/m 2/m 2/m. As aggregates of submicron-size crystals.

Physical Properties: Hardness = n.d. VHN = 2080 || [001]; 1700 ⊥ [001] (100 g load, synthetic). D(meas.) = 4.35 (synthetic). D(calc.) = 4.29 Resonance at −191.3 ppm by 29Si magic-angle spinning nuclear magnetic resonance spectroscopy.

Cell Data: Space Group: $P4_2/mnm$ (synthetic). $a = 4.1772(7)$ $c = 2.6651(4)$ Z = 2

X-ray Powder Pattern: Meteor Crater, Arizona, USA.
2.959 (100), 1.530 (50), 1.981 (35), 1.235 (25), 2.246 (18), 1.478 (18), 1.870 (13)

Chemistry: Qualitative spectrographic analysis of the mineral from Meteor Crater, Arizona, USA indicates essentially pure SiO$_2$.

Polymorphism & Series: Quartz, tridymite, cristobalite, and coesite are polymorphs.

Mineral Group: Rutile group.

Occurrence: At sites of meteorite impact, formed by shock metamorphism of quartz at temperatures ≥ 1200 °C and pressures ~100 kbar; then metastable, alters to glass or cristobalite at ≥ 300 °C.

Association: Coesite, quartz, silica glass.

Distribution: From Meteor Crater, Coconino Co., Arizona, and at the Cretaceous-Tertiary boundary, Raton, Colfax Co., New Mexico, USA. In Germany, at the Nördlinger Ries crater, Bavaria. From the Vredefort Ring crater, Orange Free State, South Africa. At the Ternovska crater, Krivoi Rog, Ukraine. From the Lonar Lake crater, Maharashtra, India.

Name: In honor of the Russian crystallographer Sergei Mikhailovich Stishov, who, with S.V. Popova, first synthesized the compound.

Type Material: n.d.