(c)2001-2005 Mineral Data Publishing, version 1

Crystal Data: Hexagonal. Point Group: $\overline{3}$ 2/m. Needlelike hexagonal crystals, to 0.4 mm, bounded by $\{10\overline{10}\}$ and $\{0001\}$, in sprays and crystalline crusts.

Physical Properties: Cleavage: On $\{10\overline{1}0\}$, fair. Tenacity: Brittle. Hardness = 3 D(meas.) = 6.05(30) D(calc.) = 4.82

Optical Properties: Semitransparent. Color: Capri blue; green in transmitted light. Streak: Pale blue, almost white. Luster: Pearly to dull. Optical Class: Uniaxial (–). Pleochroism: O = blue-green; E = almost colorless. Orientation: Parallel extinction, length-fast. $\omega = 1.802$ $\epsilon = 1.740$ 2V(meas.) = n.d.

Cell Data: Space Group: $P\overline{3}1m$. a = 10.145(1) c = 4.9925(9) Z = 1

X-ray Powder Pattern: Moctezuma mine, Mexico.

8.752 (100), 2.748 (70), 2.520 (42b), 3.531 (40), 3.273 (31), 1.766 (28), 5.054 (21)

Che	\mathbf{emis}	trv:
		UI.y •

	(1)	(2)	(3)
${ m TeO_3}$	33.4	31.71	31.02
CuO	20.0	20.31	21.08
ZnO	39.4	43.10	43.13
$\rm H_2O$		[4.88]	4.77
Total		[100.00]	100.00

(1) Moctezuma mine, Mexico; by electron microprobe, average of 20 analyses on 3 grains, $\rm H_2O$ 10.1% by the Penfield method on one sample; as part of the $\rm H_2O$ is probably zeolitic, $\rm (OH)^{1-}$ here calculated for charge balance; then corresponds to $\rm Zn_{5.75}Cu_{2.98}(TeO_6)_{2.26}(OH)_{3.90}$. (2) Blue Bell claims, California, USA; average of 9 analyses on 3 grains; recalculated to 100% from an original total of 96.59% after deduction of $\rm Ag_2O$ 4.33%, PbO 0.83%, and Cl 2.39% as impurities in structural channels, $\rm H_2O$ calculated by difference, $\rm (OH)^{1-}$ here calculated for charge balance; then corresponds to $\rm Zn_{6.04}Cu_{2.91}(Te^{6+}O_6)_{2.05}(OH)_{5.60} \bullet 0.28H_2O$. (3) $\rm Zn_6Cu_3(TeO_6)_2(OH)_6$.

Occurrence: A rare mineral in the oxidized zone of tellurium-bearing hydrothermal ore deposits.

Association: Hessite, galena, bornite, cerussite, azurite, chlorargyrite, teineite, quartz, barite, clay (Moctezuma mine, Mexico); khinite, dugganite, chlorargyrite, gold (Old Guard mine, Arizona, USA).

Distribution: From the Oriental (Bambollita) mine, northeast of the Moctezuma mine, Moctezuma, Sonora, Mexico. In the USA, at the Old Guard mine, Tombstone, Cochise Co., Arizona; from the Blue Bell claims, San Bernardino Co., California; and at the Centennial Eureka mine, Tintic district, Juab Co., Utah.

Name: For *Quetzalcoatl*, the Toltec and Aztec feathered serpent god of the sea, in allusion to its sea-blue color.

Type Material: Natural History Museum, Paris, France; The Natural History Museum, London, England, 1986,55; National Museum of Natural History, Washington, D.C., USA, 135055.

References: (1) Williams, S. (1973) Quetzalcoatlite, $\text{Cu}_4\text{Zn}_8(\text{TeO}_3)_3(\text{OH})_{18}$, a new mineral from Moctezuma, Sonora. Mineral. Mag., 39, 261–263. (2) Burns, P.C., J.J. Pluth, J.V. Smith, P. Eng, I. Steele, and R.M. Housley (2000) Quetzalcoatlite: a new octahedral-tetrahedral structure from a 2 x 2 x 40 μm^3 crystal at the Advanced Photon Source-GSE-CARS facility. Amer. Mineral., 85, 604–607.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Mineral Data Publishing.