Crystal Data: Triclinic. *Point Group*: 1. As slightly elongated to rosette-like aggregates of subparallel plates, to 0.5 mm, exhibiting rough forms {110}, {001}, and {011}.

Physical Properties: Cleavage: One poor direction. Fracture: Conchoidal. Tenacity: Brittle. Hardness = 4.5 VHN = 530 (25 g load). D(meas.) = > 4.04 D(calc.) = 4.17

Optical Properties: Translucent. *Color*: Dark yellow. *Streak*: Very pale yellow. *Luster*: Adamantine.

Optical Class: Biaxial (-). $\alpha = 1.86(1)$ $\beta = 1.917$ (calc) $\gamma = 1.93(1)$ $2V\alpha = 50(5)^{\circ}$ Dispersion: Very strong, r > v. Pleochroism: Weak; X = nearly colorless to very pale yellow; Y = pale yellow to yellow; Z = yellow to dark yellow. Absorption: Z > Y > X. Orientation: (polar coordinates in terms of φ and φ based on $(010) = 0^{\circ}/90^{\circ}$), $X(-113^{\circ}/85^{\circ})$; $Y(155^{\circ}/70^{\circ})$; $Z(-10^{\circ}/21^{\circ})$.

Cell Data: Space Group:
$$P\bar{l}$$
 . $a = 5.309(1)$ $b = 7.211(1)$ $c = 7.349(1)$ $\alpha = 87.74(3)^{\circ}$ $\beta = 86.38(3)^{\circ}$ $\gamma = 71.40(3)^{\circ}$ $Z = 1$

X-ray Powder Pattern: Vereinigung mine, Taunus, Hesse, Germany. 4.848 (100), 6.839 (64), 3.547 (57), 3.417 (52), 3.022 (51), 3.667 (47), 2.8339 (45)

Chemistry:

	(1)
PbO	33.10
Fe_2O_3	35.64
P_2O_5	20.97
H_2O	9.32
Total	98.79

(1) Vereinigung mine, Taunus, Hesse, Germany; average of 46 electron microprobe analyses, H_2O from structure determination, anionic groups confirmed by IR, corresponding to $Pb_{1.00}$ $Fe_{3.02}(PO_4)_{1.98}(OH)_{5.12}(H_2O)_{0.94}$

Mineral Group: Alunite group.

Occurrence: A secondary mineral on goethite in a weathered metallic sulfide mineral vein.

Association: Kintoreite, goethite, pyromorphite.

Distribution: On the dumps of the Vereinigung mine, near Eisenbach, ~5 km north of Bad Camberg, Taunus, Hesse, Germany.

Name: Honors Arthur Lindo Patterson (1902–1966), who developed a method employing a Fourier series to generate a three-dimensional function, the now well-known "Patterson function" in crystal-structure determination.

Type Material: Natural History Museum, Vienna, Austria.

References: (1) Kolitsch, U., H.-J. Bernhardt, W. Krause, and G. Blass (2008) Pattersonite, $PbFe_3(PO_4)_2(OH)_4[(H_2O)_{0.5}(OH)_{0.5}]_2$, a new supergene phosphate mineral: description and crystal structure. Eur. J. Mineral., 20, 281–288. (2) (2009) Amer. Mineral., 94, 401-402 (abs. ref. 1).