Crystal Data: Monoclinic. *Point Group:* 2/*m*. Platy rhombic to pseudohexagonal crystals, flattened on {100}, elongated along [010] or [001], showing large {100}, {001}, {110}, {011}, {111}, to 3 mm; as a post-mine mammillary coating. Contact twins common on {100}.

Physical Properties: Cleavage: Perfect on {100}; indistinct on {001}. Fracture: Uneven. Tenacity: Sectile, flexible, inelastic. Hardness = ~ 3 D(meas.) = 2.09(1) D(calc.) = 2.098 Slightly to moderately soluble in H₂O.

Optical Properties: Transparent. *Color:* Colorless to white; colorless in transmitted light. *Streak:* White. *Luster:* Subvitreous, pearly on cleavages. *Optical Class:* Biaxial (+). $\alpha = 1.500(3)$ $\beta = 1.520(2)$ $\gamma = 1.554(2)$ 2V(meas.) = n.d. $2V(calc.) = 76^{\circ}$ *Orientation:* Y = b; $X \land a = 29^{\circ}$; $Z \land c = -7^{\circ}$. *Dispersion:* r > v, weak.

Cell Data: Space Group: $P2_1/a$. a = 14.56(5) b = 8.016(20) c = 9.838(20) $\beta = 111^{\circ} 45(10)'$ Z = 4

X-ray Powder Pattern: Near the De Bely mine, California, USA; strong preferred orientation due to platy {100} cleavage. 6.79 (100), 3.39 (31), 5.18 (9), 2.566 (9), 3.12 (7), 2.309 (7), 4.68 (5)

Chemistry:		(1)	(2)
	B_2O_3	60.80	61.98
	Fe_2O_3	0.15	
	CaO	16.96	16.64
	SrO	0.11	
	Na ₂ O	0.26	
	K_2O	0.06	
	Li_2O	0.02	
	H_2O^+	20.82	
	H_2O^-	1.02	
	H_2O		21.38
	insol.	0.08	
	Total	100.28	100.00

(1) Near the De Bely mine, California, USA; SrO and alkalies by flame photometry, H_2O by the Penfield method; corresponds to $Ca_{1.01}B_{5.84}O_9(OH)_2 \cdot 3H_2O$. (2) $CaB_6O_9(OH)_2 \cdot 3H_2O$.

Occurrence: Typically a recent incrustation produced by weathering of colemanite and priceite veins in altered olivine basalt and basaltic clastic rocks (near the De Bely mine, California, USA).

Association: Colemanite, meyerhofferite, gowerite, ulexite, ginorite, sassolite, gypsum, manganese oxide (near the De Bely mine, California, USA).

Distribution: In the USA, in the Furnace Creek district, Death Valley, Inyo Co., California, from one km north-northwest of the De Bely mine, and several other places; coarsely crystalline in the Corkscrew mine. From the Sijes district, Salta Province, Argentina. From drill core at Piskanja, Jarandol basin, Serbia.

Name: To honor Dr. Levi Fatzinger Noble (1882-1965), geologist with the U.S. Geological Survey, who studied the Death Valley borate deposits.

Type Material: National Museum of Natural History, Washington, D.C., USA; 136416, 147960.

References: (1) Erd, R.C., J.F. McAllister, and A.C. Vlisidis (1961) Nobleite, another new hydrous calcium borate from the Death Valley region, California. Amer. Mineral., 46, 560-571. (2) Karanović, L., A. Rosić, and D. Poleti (2004) Crystal structure of nobleite, Ca[B₆O₉(OH)₂]·3H₂O, from Jarandol (Serbia). Eur. J. Mineral. 16, 825-833. (3) (2005) Amer. Mineral., 90, 772 (abs. ref. 2).