© 2001 Mineral Data Publishing, version 1.2

Crystal Data: Monoclinic. *Point Group:* n.d. Rare crystals tend to a platy habit with wedge-shaped terminations; microcrystalline, with individual grains to 0.01 mm, forming rosettes and fan-shaped aggregates.

Physical Properties: Cleavage: Parallel and normal to the plane of flattening of the microcrystals. Hardness = 4 - D(meas.) = 4.45 - D(calc.) = [4.98]

Optical Properties: Semitransparent. *Color:* Nickel-green. *Streak:* Slightly paler nickel green.

Optical Class: Biaxial. Pleochroism: X=Y= yellow-green; Z= rich emerald-green. $\alpha=1.852$ $\beta=$ n.d. $\gamma=1.867$ 2V(meas.) = $\sim 40^\circ$

Cell Data: Space Group: n.d. a = 7.85 b = 20.06 c = 14.72 $\beta = 90.78^{\circ}$ Z = [6]

X-ray Powder Pattern: Artillery Peaks area, Arizona, USA. 7.361 (10), 3.173 (10), 2.918 (8), 5.218 (7), 4.226 (5), 3.515 (5), 3.411 (5)

Chemistry:

	(1)	(2)	(3)
SiO_2	25.7	27.2	25.94
${ m TiO}_2$	4.7		
CuO	13.2	14.0	13.74
PbO	35.1	37.1	38.54
$\rm H_2O$	20.5	21.7	21.78
Total	99.2	[100.0]	100.00

(1) Artillery Peaks area, Arizona, USA; microchemical analysis, $\rm H_2O$ by Penfield method; some $\rm H_2O$ may be nonessential. (2) Recalculated to 100.0% after removal of $\rm TiO_2$ impurity. (3) $\rm Pb_2Cu_2Si_5O_{14} \cdot 14H_2O$.

Occurrence: In thoroughly oxidized Pb-Cu sulfide ores.

Association: Galena, chalcopyrite, fluorite, quartz, alamosite, melanotekite, cerussite, chalcocite, shattuckite, chrysocolla, wickenburgite, altered Fe-Ti oxides.

Distribution: On the dumps of a Pb–Ag–Cu prospect in the Artillery Peaks area, Mohave Co., Arizona, USA.

Name: For Raymond W. Ludden, Chief Geologist for Western Exploration, Phelps Dodge Corporation.

Type Material: The Natural History Museum, London, England, 1984,473–474.

References: (1) Williams, S.A. (1982) Luddenite, a new copper-lead silicate from Arizona. Mineral. Mag., 46, 363–364. (2) (1983) Amer. Mineral., 68, 643 (abs. ref. 1).