Kryachkoite (Al,Cu)₆(Fe,Cu)

Crystal Data: Orthorhombic. *Point Group: mm2*. As subhedral crystals to 1.2 μ m.

Physical Properties: Cleavage: n.d. Fracture: n.d. Tenacity: n.d.

Hardness = n.d. D(meas.) = n.d. D(calc.) = 3.79

Optical Properties: Opaque. Color: n.d. Streak: n.d. Luster: n.d.

Optical Class: n.d.

Cell Data: *Space Group*: $Cmc2_1$. a = 7.460 b = 6.434 c = 8.777 Z = 4

X-ray Powder Pattern: Calculated pattern.

2.051 (100), 2.130 (87), 2.001 (62), 2.243 (61), 2.061 (46), 2.164 (35), 2.007(32)

Chemistry:	(1)	
Al	61.0	
Fe	12.6	
Cu	25.5	
Si	0.17	
Cr	0.40	
Total	99.7	

(1) Khatyrka CV3 carbonaceous chondrite meteorite; average of 8 electron microprobe analyses; corresponds to $Al_{5.45}Cu_{0.97}Fe_{0.55}Cr_{0.02}Si_{0.01}$; the species definition requires the presence of all three metals (Al, Cu and Fe).

Occurrence: In metal assemblages in a carbonaceous chondrite meteorite.

Association: Khatyrkite, aluminum (Al_{0.97}Cu_{0.03}), spinel, hercynite, forsterite, silicate glass.

Distribution: From the Khatyrka CV3 carbonaceous chondrite meteorite, Koryak Mountains, Far Eastern region, Russia.

Name: Honors Valery Kryachko who found the first samples of the Khatyrka meteorite in the Koryak Mountains in 1979 and later played a leading role in the expedition to recover more fragments in 2011.

Type Material: National Museum of Natural History, Washington, D.C., USA (in section 126A of USNM 7908).

References: (1) Ma, C., C. Lin, L. Bindi, and P.J. Steinhardt (2017) Hollisterite (Al₃Fe), kryachkoite (Al,Cu)₆(Fe,Cu), and stolperite (AlCu): Three new minerals from the Khatyrka CV3 carbonaceous chondrite. Amer. Mineral., 102, 690-693.