Crystal Data: Hexagonal. *Point Group*: 6/m. As interrupted earthy films to 2.5 cm. Rarely as well-terminated prismatic hexagonal crystals to 0.15 mm, displaying {10*0} and {10*1}; in sprays or open-work chaotic groups to 0.03 mm. As moss-like, friable aggregates of acicular crystals.

Physical Properties: Cleavage: None. Fracture: Uneven. Tenacity: Brittle. Hardness = ~ 3 VHN = 122-142, 132 average (20 g load). D(meas.) = n.d. D(calc.) = 4.205

Optical Properties: Transparent to translucent. *Color*: Reddish brown to dark brownish red, brown to light brown in moss-like aggregates; dark gray in reflected light with distinct red-brown internal reflections. *Streak*: Brown. *Luster*: Adamantine to semi-metallic (crystals); silky (aggregates). *Optical Class*: n.d. *Anisotropism*: Weak, brownish to greenish tints. Weakly bireflectant. R₁-R₂: (400) 7.1-8.2, (420) 7.7-8.8, (440) 7.9-9.1, (460) 7.8-9.0, (470) 7.8-9.0, (480) 7.7-8.9, (500) 7.6-8.8, (520) 7.5-8.8, (540) 7.4-8.7, (546) 7.3-8.7, (560) 7.3-8.6, (580) 7.2-8.6, (589) 7.2-8.6, (600) 7.2-8.5, (620) 7.1-8.5, (640) 7.1-8.4, (650) 7.1-8.4, (660) 7.0-8.3, (680) 7.0-8.2, (700) 6.9-8.2

Cell Data: Space Group: $P6_3/m$. a = 9.423(1) c = 7.669(1) Z = 2

X-ray Powder Pattern: Sentyabr'skoe deposit, Ilirney ore district, Western Chukotka, Russia. 8.18 (100), 4.088 (61), 2.796 (52), 2.864 (24), 2.977 (16), 3.087 (15), 3.847 (14)

Chemistry:		(1)	(2)
	CuO	0.58	
	MgO	4.20	2.72
	ZnO	11.42	10.99
	MnO	[1.25]	
	Mn_2O_3	[7.14]	10.66
	Fe_2O_3	0.06	

 $\begin{array}{ccc} {\rm TeO_2} & 65.06 & 64.68 \\ \underline{\rm H_2O} & [11.01] & 10.95 \\ \hline {\rm Total} & 100.72 & 100.00 \\ \end{array}$

(1) Sentyabr'skoe deposit, Ilirney ore district, Western Chukotka, Russia; average of 9 electron microprobe analyses, MnO and Mn₂O₃ apportioned for charge balance from total Mn as Mn₂O₃ = 8.54, H₂O calculated from stoichiometry; corresponds to Mg_{0.77}Mn²⁺_{0.13}Cu_{0.05}Zn_{1.03}Mn³⁺_{0.67}Fe³⁺_{0.01}Te⁴⁺₃O₉•4.5H₂O. (2) M_{g0.5}[ZnMn³⁺(TeO₃)₃]•4.5H₂O.

Occurrence: In the oxidation zone of sulfide-telluride-bearing quartz veins in cracks and cavities.

Association: Gypsum, malachite, azurite, cerussite, anglesite, brochantite, linarite, posnjakite, chlorargyrite, acanthite, gold, goethite, coronadite, paratellurite, raisaite, xocomecatlite.

Distribution: From the Sentyabr'skoe gold-silver deposit, Ilirney ore district, 110 km east southeast of Bilibino, Western Chukotka, North-Eastern Region, Russia.

Name: For the locality that produced the first specimen, the *Ilirney* ore district, near the village of *Ilirney*, the *Ilirney* Lakes and *Ilirney*veem River, Russia.

Type Material: A.E. Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia (95277).

References: (1) Pekov, I.V., O.I. Siidra, E.A. Vlasov, V.O. Yapaskurt, Yu.S. Polekhovsky, and A.V. Apletalin (2018) Ilirneyite, $M_{g0.5}[ZnMn^{3+}(TeO_3)_3]\cdot 4.5H_2O$, a new mineral from Chukotka, Russia. Can. Mineral., 56 (6), 913-921. (2) (2020) Amer. Mineral., 105, 1112 (abs. ref. 1).