Crystal Data: Hexagonal. *Point Group*: $\bar{3}$ *m*, 3m, or 32. As hexagonal or rounded plates to 5 mm, in rose-like aggregates of thin, distorted or curved flakes or as crusts to 2 cm.

Physical Properties: Cleavage: Perfect on $\{001\}$. Fracture: n.d. Tenacity: Flexible, inelastic. Hardness = 1 VHN = 35 (10 g load). D(meas.) = n.d. D(calc.) = 3.72

Optical Properties: Opaque. *Color*: Dark bronze (fresh), to nearly black. *Streak*: Black. *Luster*: Metallic (fresh), dull, or tarnishes to iridescent golden-brown. *Pleochroism*: Yellow to gray. *Bireflectance*: Moderate. *Anisotropism*: Strong, bluish gray to yellowish beige. *Optical Class*: n.d.

R₁-R₂: (470) 15.0-16.6, (546) 14.8-20.5, (589) 14.5-24.1, (650) 14.5-24.1

Cell Data: Space Group: $R\bar{3}$ m, $R\bar{3}$ m, or $R\bar{3}$ 2. a = 3.792(2) c = 34.06(3) Z = 3

X-ray Powder Pattern: Oktyabr'skiy mine, Norilsk district, Krasnoyarskiy Kray, Russia. 5.69 (100), 3.268 (58), 1.871 (45), 3.163 (36), 1.894 (34), 2.143 (19), 11.42 (18), 3.784 (17)

Chemistry:

(1)
0.10
0.03
45.31
0.07
18.29
20.37
15.62
[0.98]
100.77

(1) Oktyabr'skiy mine, Norilsk district, Krasnoyarskiy Kray, Russia; average of 6 electron microprobe analyses, Fe^{2^+}/Fe^{3^+} calculated for charge balance, H calculated as if present only as OH, presence of OH and absence of H_2O confirmed by IR spectroscopy; corresponding to $(Fe_{1.09}Cu_{0.91})_{\Sigma=2.00}S_2 \cdot (Fe^{2^+}_{1.34}Fe^{3^+}_{0.12}Al_{0.01})_{\Sigma=1.47}(OH)_{3.07}$.

Mineral Group: Valleriite group.

Occurrence: Of low-temperature hydrothermal origin coating cavities in pentlandite-mooihoekite-cubanite ore with minor magnetite and chalcopyrite.

Association: Ferrotochilinite, magnetite, an Fe-rich chlorite-type phyllosilicate, hibbingite, rhodochrosite.

Distribution: From several Cu-Ni-PGM deposits of the Norilsk region, including at the Oktyabr'skiy mine, Talnakh, Krasnoyarskiy Kray, Siberia, Russia.

Name: As the structural analogue (based on chemical, X-ray, and IR data similarities) of *valleriite* with essential *ferrous iron*.

Type Material: A.E. Fersman Mineralogical Museum, Academy of Sciences, Moscow, Russia.

References: (1) Pekov, I.V., E.V. Sereda, V.O. Yapaskurt, Yu.S. Polekhovsky, S.N. Britvin, and N.V. Chukanov (2012) Ferrovalleriite, 2(Fe,Cu)S·1.5Fe(OH)₂: validation as a mineral species and new data. Zap. Ross. Mineral. Obshch., 141(6), 29-43 (in Russian, with English abstract). (2) (2014) Amer. Mineral., 99, 243 (abs. ref. 1).