Crystal Data: Cubic. *Point Group*: $4/m \ \bar{3} \ 2/m$. Forms trapezohedral {211} crystals to 15 μ m, with cores of the Ti-analog of kerimasite. As rims on lakargiite. Also as poikilitic crystals < 50 μ m with inclusions of wadalite or katoite-grossular pseudomorphs after wadalite, in some cases substituted by cuspidine.

Physical Properties: *Cleavage*: None. *Fracture*: n.d. *Tenacity*: n.d. *Hardness* = n.d. D(meas.) = n.d. D(calc.) = 4.708 [analysis 1] - 4.750 Partially metamict.

Optical Properties: Translucent to transparent. *Color*: Light yellow to dark brown. *Streak*: Creamy. *Luster*: Strongly vitreous. *Optical Class*: Isotropic. n(calc.) = 1.94

Cell Data: Space Group: $Ia\bar{3}d$. a = 12.536(3) Z = 8

X-ray Powder Pattern: Calculated.

1.6752 (100), 2.5589 (95), 4.43 (87), 3.1340 (84), 2.8031 (47), 1.4016 (35), 1.3363 (29)

Chemistry:		(1)		(1)
	UO ₃	6.30	Al ₂ O ₃	6.17
	Nb ₂ O ₅	0.08	Sc_2O_3	0.05
	Sb_2O_5	16.73	Fe_2O_3	19.82
	SiO ₂	0.28	FeO	2.20
	TiO ₂	2.62	MgO	0.02
	ZrO_2	4.21	CaO	23.86
	SnO_2	16.70	Total	99.04

 $\begin{array}{l} (1) \mbox{ Upper Chegem Caldera, Northern Caucasus, Kabardino-Balkaria, Russia; average of 9 electron microprobe analyses, valences inferred from Raman spectroscopy; corresponding to \\ (Ca_{2.954}Fe^{2+}_{0.043}Mg_{0.003})_{\Sigma=3.000}(Sn_{0.850}Sb^{5+}_{0.764}Zr_{0.121}U^{6+}_{0.127}Ti^{4+}_{0.070}Sc_{0.009}Nb^{5+}_{0.058}Hf_{0.001})_{\Sigma=2.001} \\ (Fe^{3+}_{2.051}Al_{0.653}Fe^{2+}_{0.182}Ti^{4+}_{0.087}Si_{0.028})_{\Sigma=3.001}O_{12}. \end{array}$

Polymorphism & Series: Forms complex series within the group, {Ca₃}[Sb⁵⁺Sn⁴⁺](Fe³⁺₃)O₁₂.

Mineral Group: Bitikleite group, garnet supergroup.

Occurrence: From fluorine metasomatism of a thermally-altered carbonate-silicate xenolith (20 m long) in ignimbrite, the heat from which created sanidinite facies metamorphism in the xenolith.

Association: Kumtyubeite, cuspidine, fluorchegemite, larnite, fluorite, wadalite, rondorfite, hydroxylellestadite, perovskite, lakargiite, kerimasite, elbrusite, srebrodolskite, bultfonteinite, ettringite group minerals, hillebrandite, afwillite, tobermorite-like minerals, hydrocalumite, hydrogrossular.

Distribution: From the north end of Xenolith No.1, Upper Chegem Caldera, Northern Caucasus, Kabardino-Balkaria, Russia.

Name: Originally named bitikleite-(SnFe). Subsequently re-named after *Dzhulu* Mountain, located near the site from which the first specimens were collected.

Type Material: A.E. Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia (4025/1).

References: (1) Galuskina, I.O., E.V. Galuskin, J. Kusz, P. Dzierżanowski, K. Prusik, V.M. Gazeev, N.N. Pertsev, and L. Dubrovinsky (2013) Dzhuluite, Ca₃SbSnFe³⁺₃O₁₂, a new bitikleite-group garnet from the Upper Chegem Caldera, Northern Caucasus, Kabardino-Balkaria, Russia. Eur. J. Mineral., 25, 231-239. (2) (2015) Amer. Mineral., 100, 1322-1323 (abs. ref. 1).