Crystal Data: Hexagonal. *Point Group*: 6/m 2/m 2/m. As acicular crystals to 20 μ m.

Physical Properties: *Cleavage*: n.d. *Fracture*: n.d. *Tenacity*: n.d. Hardness = n.d. D(calc.) = 3.905 (synthetic CaAl₄Si₂O₁₁)

Optical Properties: [Transparent.] *Color*: n.d. *Streak*: n.d. *Luster*: n.d. *Optical Class*: n.d.

(1)

Cell Data: Space Group: $P6_3/mmc$. a = 5.42(1) c = 12.70(3) Z = 2

X-ray Powder Pattern: n.d.

Chemistry:

	(1)
Al_2O_3	52.7
SiO ₂	32.6
CaO	15.0
Total	100.0

(1) Oued Awlitis 001 lunar meteorite; average of 10 TEM-EDS analyses supplemented by micro-Raman spectroscopy; corresponds to $Ca_{1.02}Al_{3.92}Si_{2.06}O_{11}$.

Occurrence: In shock melt pockets of roughly anorthitic bulk composition in a feldspatic lunar meteorite. Formed from primordial feldspathic lunar crust during impact cratering events. Forms in Earth's mantle during deep recycling of aluminous crustal materials and is a key host for Al and Ca of subducted sediments in most of the transition zone and uppermost lower mantle (460-700 km).

Association: Ca-rich plagioclase, olivine, pyroxene, Fe-Ni metal, troilite, ilmenite, Ti-rich spinel, apatite, zircon, baddeleyite, "silica".

Distribution: From the feldspatic lunar meteorite Oued Awlitis 001.

Name: Honors Don E. Wilhelms (b. 1930) for his seminal and ground-breaking work on the geological history of the Moon.

Type Material: Meteorite collection, Natural History Museum, Vienna, Austria (NHMV-O104).

References: (1) Fritz, J., A. Greshake, M. Klementova, R. Wirth, L. Palatinus, R.G. Trønnes, V.A. Fernandes, U. Böttger, and L. Ferrière (2020) Donwilhelmsite, [CaAl₄Si₂O₁₁], a new lunar high-pressure Ca-Al-silicate with relevance for subducted terrestrial sediments. Amer. Mineral., 105(11), 1704-1711. (2) Gautron, L., R. Angel, and R. Miletich (1999) Structural characterization of the high-pressure phase CaAl₄Si₂O₁₁. Phys. Chem. Min. 27, 47-51.