Crystal Data: Cubic. Point Group: 23. As submicrometer grains.
Physical Properties: Cleavage: n.d. Fracture: n.d. Tenacity: n.d. Hardness = n.d.
$\mathrm{D}($ meas.$)=$ n.d. $\quad \mathrm{D}($ calc. $)=2.913$
Optical Properties: n.d. Color: n.d. Streak: n.d. Luster: n.d.
Optical Class: n.d.

Cell Data: Space Group: P213. $\quad a=4.557 \quad \mathrm{Z}=4$
X-ray Powder Pattern: Calculated pattern.
2.0384 (100), 1.8608 (50), 1.2182 (24), 3.2230 (18), 2.6316 (16), 0.8464 (15), 0.9946 (12)

Chemistry:

$\begin{array}{ll}\mathrm{Cr} & 3.2\end{array}$
$\mathrm{Mn} \quad 38.4$
$\mathrm{Fe} \quad 9.9$
Total 100.0
(1) IDP L2055I3; average quantitative EDX spectral analysis; corresponding to $\left(\mathrm{Mn}_{0.77} \mathrm{Fe}_{0.18} \mathrm{Cr}_{0.05}\right) \mathrm{Si}$.

Polymorphism \& Series: Solid solution series with FeSi.
Mineral Group: Fersilicite group.
Occurrence: Within an interplanetary dust particle, (IDP), that likely originated from a comet; likely formed as high-temperature condensates either in the early Solar System or in the outflow of an evolved star or supernova explosion.

Association: Mn-bearing forsterite, enstatite, FeNi sulfides, glass with embedded metal and sulfide grains.

Distribution: In IDP L2055I3 from the Comet 26P/Grigg-Skjellerup dust stream.
Name: Honors Donald E. Brownlee (b. 1943), an American astronomer and a founder of the field of cosmic dust research who is the principal investigator of the NASA Stardust Mission that collected dust samples from Comet 81P/Wild-2 and returned them to Earth.

Type Material: n.d.
References: (1) Nakamura-Messenger, K., L.P. Keller, S.J. Clemett, S. Messenger, J.H. Jones, R.L. Palma, R.O. Pepin, W. Klöck, M.E. Zolensky, and H. Tatsuoka (2010) Brownleeite: A new manganese silicide mineral in an interplanetary dust particle. Amer. Mineral., 95, 221-228.

