Crystal Data: Tetragonal. *Point Group*: 4/m. As crystal lamella to 10 μ m intergrown with transjordanite (terrestrial) or as chisel-like crystals to 8 μ m (meteoritic).

Physical Properties: *Cleavage*: n.d. *Tenacity*: n.d. *Fracture*: n.d. Hardness = n.d. D(meas.) = n.d. D(calc.) = 7.54

Optical Properties: Opaque. *Color*: White in reflected light. *Streak*: n.d. *Luster*: Metallic. *Optical Class*: n.d.

Cell Data: Space Group: I4/m. a = 8.640(1) c = 5.071(3) terrestrial; a = 8.6543(3) c = 5.0665(2) (meteoritic) Z = 2

X-Ray Diffraction Pattern: Halamish wadi, southern Hatrurim basin, Negev Desert, Israel. 1.860 (100), 2.341 (54), 1.931 (40), 2.040 (15), 2.160 (13), 4.374 (5), 2.503 (5)

Chemistry:		(1)	(2)
	Ni	81.87	78.59
	Fe	< 0.2	4.10
	Со	< 0.2	0.07
	Р	18.16	17.91
	Total	100.03	100.67

(1) Halamish wadi, southern Hatrurim basin, Negev Desert, Israel; average electron microprobe analysis; corresponds to $Ni_{11.97}P_{5.03}$. (2) Marjalahti meteorite; average electron microprobe analysis; corresponds to $(Ni_{11.43}Fe_{0.63}Co_{0.01})_{12.07}P_{4.94}$.

Occurrence: Terrestrial nazarovite originates in phosphide assemblages in pyrometamorphic rocks. Meteoritic nazarovite occurs in Ni-rich phosphide precipitates in a pallasite meteorite. Likely an example of crystal-chemical Fe/Ni fractionation in the solid state within reduced systems.

Association: Transjordanite, magnetite, diverse Fe-Ni phosphides (Halamish wadi); nickelphosphide (Marjalahti pallasite).

Distribution From Halamish wadi, southern Hatrurim basin, Negev Desert, Israel (holotype) and the Marjalahti meteorite, fallen June 01, 1902, at the northern coast of Lake Ladoga, Karelia, Russia.

Name: Honors Michail Alexandrovich *Nazarov* (1949-2016), Russian mineralogist and petrologist, for his contributions to the study of reduced meteoritic assemblages.

Type Material: A.E. Fersman Mineralogical Museum, RAS, Moscow, Russia (5381/1).

References: (1) Britvin, S.N., M.N. Murashko, M.G. Krzhizhanovskaya, O.S. Vereshchagin, Y. Vapnik, V.V. Shilovskikh, M.S. Lozhkin, and E.V. Obolonskaya (2022) Nazarovite, Ni₁₂P₅, a new terrestrial and meteoritic mineral structurally related to nickelphosphide, Ni₃P. Amer. Mineral., 107(10), 1946-1951.