Gadolinite-(Nd) \(\text{Nd}_2\text{Fe}^{2+}\text{Be}_2\text{O}_2(\text{SiO}_4)_2 \)

Crystal Data: Monoclinic.
Point Group: 2/m.
As anhedral grains to 150 \(\mu \text{m} \).

Physical Properties:
- **Cleavage:** None.
- **Tenacity:** Brittle.
- **Fracture:** Conchoidal.
- **Hardness:** 6.5-7
- **D(meas.)** = n.d.
- **D(calc.)** = 4.86

Optical Properties:
- **Transparency:** Transparent.
- **Color:** Olive green.
- **Streak:** White.
- **Luster:** Vitreous to adamantine.
- **Optical Class:** Biaxial (-).
- \(\alpha = 1.78(1) \quad \beta(\text{calc.}) = 1.80 \quad \gamma = 1.81(1) \)
- **Dispersion:** Strong, \(r < v \).
- **Pleochroism:** Weak in shades of olive green.

Cell Data:
- **Space Group:** P2₁/c.
- \(a = 4.8216(3) \quad b = 7.6985(4) \quad c = 10.1362(6) \quad \beta = 90.234(4)^\circ \quad Z = 2 \)

X-ray Powder Pattern:
Malmkärra mine, south-central Sweden.
2.888 (100), 4.830 (72), 3.191 (52), 2.607 (49), 3.603 (37), 3.097 (35), 2.412 (24)

Chemistry:
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{SiO}_2)</td>
<td>21.77</td>
<td>20.77</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>(\text{Y}_2\text{O}_3)</td>
<td>5.49</td>
<td></td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>(\text{La}_2\text{O}_3)</td>
<td>2.78</td>
<td></td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>(\text{Ce}_2\text{O}_3)</td>
<td>14.04</td>
<td></td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>(\text{Pr}_2\text{O}_3)</td>
<td>3.28</td>
<td></td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>(\text{Nd}_2\text{O}_3)</td>
<td>19.27</td>
<td>58.16</td>
<td>10.62</td>
<td>12.42</td>
</tr>
<tr>
<td>(\text{Sm}_2\text{O}_3)</td>
<td>5.30</td>
<td></td>
<td>8.65</td>
<td></td>
</tr>
<tr>
<td>(\text{Eu}_2\text{O}_3)</td>
<td>0.24</td>
<td></td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>(\text{Gd}_2\text{O}_3)</td>
<td>4.10</td>
<td></td>
<td></td>
<td>[0.55]</td>
</tr>
<tr>
<td>(\text{Tb}_2\text{O}_3)</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{DY}_2\text{O}_3)</td>
<td>1.32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Malmkärra mine, south-central Sweden; average of 11 electron microprobe analyses and laser ablation inductively coupled plasma mass spectrometry supplemented by Raman spectroscopy.
\(\text{H}_2\text{O} \) calculated for charge balance, \(\text{BeO} \) from stoichiometry; corresponds to \((\text{Nd}_{0.63}\text{Ce}_{0.47}\text{Y}_{0.22}\text{Sm}_{0.17}\text{Gd}_{0.13}\text{Pr}_{0.11}\text{La}_{0.09}\text{Dy}_{0.04}\text{Ca}_{0.01}\text{Er}_{0.01}\text{ Tb}_{0.01}\text{ Eu}_{0.01}\text{Ho}_{0.01})\text{Fe}_{1.69}\text{Mg}_{0.07}\text{Mn}_{0.01}\text{Ce}_{0.89}\text{Be}_{1.98}\text{B}_{2.02}\text{Si}_{2.06}\text{O}_{6.66}\text{(OH)}_{0.34} \)
(2) \(\text{Nd}_2\text{Fe}^{2+}\text{Be}_2\text{O}_2(\text{SiO}_4)_2 \)

Mineral Group: Gadolinite supergroup, gadolinite subgroup.

Occurrence: In Fe-REE “Bastnäs-type” polymetallic skarn deposits.

Association:
- Fluorbritholite-(Ce), västmanlandite-(Ce), dollaseite-(Ce), bastnäsite-(Ce), tremolite.

Distribution:
At the Malmkärra mine [TL], ~3.5 km west-southwest of Norberg, as well as at the Johanna and Nya Bastnäs mines, south-central Sweden.

Name: Suffix indicates the Nd-dominant member of the gadolinite subgroup.

Type Material:
Moravian Museum, Brno, Czech Republic (B 11298).

References: